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Abstract. This paper studies a new model, which considers the effects of drivers reaction delay in the Nagel-
Schreckenberg model. We studied the traffic flow properties in the new model under both periodic and
open boundary conditions. The fundamental diagram, spatio-temporal patterns, density-density correlation
functions, relaxation time, and distance headway distribution are investigated. Several interesting results
are reported, for example, (i) the jam becomes less condensed when the delay effect is considered; (ii) the
distance headway of the new model exhibits a multi-peak distribution when randomization p is small; (iii)
for large p, the distribution of distance headway follows a power law in the new model; (iv) under open
boundary conditions, the existence of a stationary jam near the left boundary will lower the flow rate.

PACS. 89.40.-a Transportation

1 Introduction

Recently the traffic flow problem has attracted the in-
terests of many physicists and engineers [1–5]. There are
two different conceptual frameworks for modeling traffic.
In the “coarse-grained” fluid-dynamical description traffic
is viewed as a compressible fluid formed by vehicles, but
these individual vehicles do not appear explicitly in the
theory. In contrast, in the so-called “microscopic” vehic-
ular traffic flow models, attention is explicitly focused on
individual vehicles; the nature of the interactions among
these vehicles is determined by the way in which the ve-
hicles influence each others’ movement.

Microscopic models can be further classified into so-
called car-following models and cellular automata (CA)
models. In the car-following models [6–8], one writes for
each individual vehicle an equation of motion which is the
analogue of Newton’s equation for each individual particle
in a system of interacting classical particles. In the earliest
car-following models [9] the difference in the velocities of
the nth and (n + 1)th vehicles was assumed to be the
stimulus for the nth vehicle to change its speed. In other
words, it was assumed that every driver tends to move
with the same speed as that of the corresponding leading
vehicle so that

dvn

dt
(t) = κ(vn+1(t) − vn(t)), (1)

a e-mail: rjiang@ustc.edu.cn

where κ is a sensitivity coefficient. Later it has been
argued [10] that, for a more realistic description, the
strength of the response of a driver at time t should depend
on the stimulus received from the other vehicles at time
t − T , where T is the reaction delay time of the drivers.
Therefore, generalizing equation (1), one would get

dvn

dt
(t) = κ(vn+1(t − T ) − vn(t − T )). (2)

Studies show that T is a very important parameter, for
example, (i) if κT > π/2, the solution of equation (2) is
oscillatory with increasing amplitude; (ii) if κT = π/2,
the solution is oscillatory with constant amplitude; (iii) if
1/e < κT < π/2, the solution is oscillatory with damped
amplitude; (iv) if κT ≤ 1/e, the solution is non-oscillatory
and damped [11,12].

In 1995, Bando et al. proposed the well-known opti-
mal velocity (OV) model [13], and it is shown that the
model could describe such traffic phenomenon as stop-
and-go waves. Later, the reaction delay effect was also
taken into account in the OV model [14,15]. Moreover,
Del Castillo et al. also studied the reaction times of drivers
and the stability of traffic flow [16].

Recently, modelling road traffic behavior using cellu-
lar automata (CA) has become a well-established method
to model, analyze, understand and even forecast the be-
havior of real road traffic because the automatas evolu-
tion rules are simple, straightforward to understand, com-
putationally efficient and sufficient to emulate much of
the behavior of observed traffic flow [3–5,17]. Since the



268 The European Physical Journal B

Nagel-Schreckenberg (NaSch) model [18] was proposed in
1992, various CA models have been proposed [1–5,17].
These models are successful in reproducing many traf-
fic features such as stop-and-go waves, metastable states,
synchronized flow, capacity drop and so on.

Nevertheless, in these CA models, the reaction delay
time of drivers has not been considered (at least not explic-
itly considered). Therefore, in this paper, we incorporate
the delay time into the NaSch model and investigate the
delay effects in CA models.

The paper is organized as follows. In the next section,
the NaSch model is revised to take the delay time into
account. The simulation results are presented and com-
pared in Section 3. The conclusions and outlook are given
in Section 4.

2 The NaSch model considering delay time

In this section, we briefly recall the definition of the NaSch
model first. The NaSch model is a discrete model for
traffic flow. A road is divided into cells, which can be
either empty or occupied by a vehicle with a velocity
v = 0, 1, ..., vmax. The vehicles move from the left end
of a road to the right end of the road. At each discrete
time step t → t + 1, the system update is performed in
parallel according to the following four sub-rules:
1. acceleration: vn(t + 1

3 ) → min(vn(t) + 1, vmax);
2. deceleration: vn(t + 2

3 ) → min(vn(t + 1
3 ), dn(t));

3. randomization: vn(t+1) → max(vn(t+ 2
3 )− 1, 0) with

probability p;
4. position update: xn(t + 1) → xn(t) + vn(t + 1).
Here, vn and xn denote the velocity and position of the
vehicle n respectively; vmax is the maximum velocity and
dn = xn+1 − xn − 1 denotes the number of empty cells in
front of the vehicle n; p is the randomization probability.

If we combine steps 1 and 2 together, we have

vn

(
t +

2
3

)
→ min(vn(t) + 1, dn(t), vmax).

This means the acceleration of the vehicle (without con-
sidering the randomization) is

A(t) = min(vn(t) + 1, dn(t), vmax) − vn(t). (3)

If we consider the delay effect (the delay time is set to one
time step, i.e., 1 s, in this paper), the acceleration needs
to be changed to

A(t) = min(vn(t−1)+1, dn(t−1), vmax)−vn(t−1). (4)

Therefore, a modified NaSch Model considering delay time
(here referred to as NaSch-D model) are listed as follows:
1. determination of acceleration: A(t) = min(vn(t − 1) +

1, dn(t − 1), vmax) − vn(t − 1);
2. adjustment of velocity: vn(t + 2

3 ) → min(vn(t) +
A(t), dn(t), vmax);

3. randomization: vn(t+1) → max(vn(t+ 2
3 )− 1, 0) with

probability p;
4. position update: xn(t + 1) → xn(t) + vn(t + 1).

ρ
ρ

Fig. 1. The fundamental diagram of deterministic NaSch-D
model. The dotted line shows the congested branch of the de-
terministic NaSch model.

Fig. 2. The evolution of a disturbance in the homogeneous
traffic flow. The road length is L = 1000. Initially there are
200 vehicles, which are homogeneously distributed. Then one
vehicle is removed from the system.

3 Simulation results

In this section, the numerical investigation of the NaSch-D
model is carried out and compared with the results of the
NaSch model. The maximum velocity is set to vmax = 5.
The system size is L = 1000 unless otherwise mentioned.
Periodic boundary conditions and open boundary condi-
tions are adopted respectively in the following two subsec-
tions.

3.1 Periodic boundary conditions

Firstly we consider the deterministic version of the NaSch-
D model (i.e., the randomization p is set to 0). Figure 1
shows the fundamental diagram of the deterministic
NaSch-D model. One can see that two branches as well
as four scattered points exist. The solid line branch and
the scattered points are from the homogeneous initial con-
figuration and the dashed line branch is from the random
initial configuration. The four scattered points fall on the
right branch of the fundamental diagram, but any small
disturbance will destroy the homogeneity of the traffic flow
and the traffic flow will lower to the dashed line branch
(for example, see Fig. 2). Therefore, these states are un-
stable.

For the solid line branch in density range ρc1 < ρ <
ρc2, a small disturbance will dissipate with time but a
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ρ

Fig. 3. The density-density correlation function in (a) the NaSch model (b) the NaSch-D model. The density corresponds to
critical density in the NaSch model and critical density ρc1 in the NaSch-D model. The initial configuration is random in both
cases.

(a) (b)

Fig. 4. (a) The fundamental diagram of the non-deterministic NaSch-D model. The inset shows the details between the two
dotted lines. (b) The fundamental diagram of the non-deterministic NaSch model. In (b), the system L = 10 000 is used to
avoid the finite size effect.

large disturbance will reduce the traffic flow to the dashed
line branch. The critical amplitude of the disturbance de-
creases with the increase of density and tends to zero at
ρc2. Therefore, these states are metastable.

For the dashed line branch, the traffic flow is a mixture
of free flow and jams (Fig. 2). The flow rate corresponding
to ρc1 is the flow rate out of jams and ρc1 its correspond-
ing density. Considering two vehicles in jams, when the
first vehicle begins to accelerate, the second vehicle will
accelerate two time steps later due to time delay. As a re-
sult, when both vehicles reach maximum velocity, the net
distance between two vehicles is 10 cells. Consequently,
ρc1 = 1/11 = 0.0909 and the corresponding flow rate is
0.4545. The numerical results are in very good agreement
with the analysis.

Figure 3 compares the density-density correlation
function, which is defined as

G(r) =
1
τ

1
L

τ∑
t=1

L∑
j=1

njnj+r − ρ,

in the NaSch model and NaSch-D model. Here nj = 0 for
an empty cell and nj = 1 for a cell occupied by a vehicle.
One can see that the interval between the peaks is much
larger in the NaSch-D model than in the NaSch model.
This is because in the NaSch-D model, the net distances
between two successive vehicles are normally larger than
or equal to 10 cells due to the delay effect.

Next we investigate the randomization effect in the
NaSch-D model. Figure 4a shows the fundamental di-
agram of the non-deterministic NaSch-D model. The
metastable states existing in the deterministic NaSch-D
model disappear due to the randomization effect (see,
Fig. 5).

Compared with the fundamental diagram of the NaSch
model (Fig. 4b), it can be seen that the flow rate exhibits
a smooth variation at its maximum value. Moreover, the
maximum flow rate is lower in the NaSch-D model than in
the NaSch model. This means that the reaction delay of
drivers will decrease the capacity of a road. The capacity
difference is large for small p. However, with the increase of
p, the difference decreases. When p is large, the difference
becomes small (Fig. 6).
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Fig. 5. The appearance of jams from homogeneous traffic. The
density ρ = 0.1 is only slightly larger than ρc1 = 0.0909, and
the randomization p = 0.01. One can see that even with such
a small randomization effect, the jams appear very quickly (in
about 100 time steps).

Fig. 6. The capacity of the NaSch model and NaSch-D model.

We also notice that in the NaSch model, the density
corresponding to maximum flow rate decreases with the
increase of p (dashed lines in Fig. 4b). But, in NaSch-D
model, this density is essentially independent of the value
of p (the dashed line in Fig. 4a). Furthermore, when p is
very large (p = 0.9), a rough plateau forms in the density
range between the two dotted lines.

Note that in systems with ramps and systems with a
stationary defect, a plateau formation will be exhibited in
the fundamental diagram. In the disordered model pro-
posed in [19], a plateau in the fundamental diagram is in-
duced by the ‘careless’ drivers (dynamic defects) that act
as blockages in a system. Our model, therefore, is differ-
ent since it leads to a plateau under its intrinsic dynamics
without introducing any static and dynamic artificial de-
fects.

Figure 7 compares the spatio-temporal structures of
the NaSch-D model and the NaSch model. One can see
that the spatio-temporal features of the NaSch-D model
are quite different from those of the NaSch model: the jams
are more condensed in the NaSch model. In other words,
the reaction delay of drivers spreads the jams over the
road. This is also manifested from the distance headway
distribution as shown in Figure 8, where the distribution
of the NaSch model is narrower than that in the NaSch-D
model.

More interestingly, the distance headway of the NaSch-
D model exhibits a multi-peak distribution when random-
ization p is small. These peaks correspond to distance
headway 1, 4, 6, 8, 10 respectively. Except for the first
peak, the difference between other headways correspond-
ing to the peaks is 2. This is because, when accelerating
from a jam, the second vehicle will be delayed for two time
steps. When the second vehicle begins to accelerate, it is
usually two cells behind the first vehicle.

Furthermore, we also notice that the probability that
distance headway is 1 only slightly depends on p in the
NaSch-D model (while in the NaSch model, it increases
with the increase of p). This means that with the in-
crease of p, the number of jammed (or stopped) vehicles
only slightly increases, but more vehicles have to slow
down. This explains why spatio-temporal structures of
the NaSch-D model are different from those of the NaSch
model.

With the increase of p, the multi-peaks distribution in
NaSch-D model is smeared. Moreover, we find that for
large p, the distribution of distance headway follows a
power law in NaSch-D model, while it deviates the power
law in NaSch model. This implies that with the consider-
ation of reaction delay of drivers, the self-organized criti-
cality (SOC), which is observed in real traffic [20,21], can
be depicted.

We also compare the relaxation time, which is charac-
terized by the parameter

τ =
∫ ∞

0

[min{v∗(t), < v̄∞ >}− < v̄(t) >]dt

in the NaSch-D model and NaSch model. Here v∗(t) de-
notes the average velocity in the acceleration phase t → 0
for low vehicle density ρ → 0. In this regime, due to
the absence of interactions between the vehicles, one has
v∗(t) = (1 − p)t. We start from a random configuration
of vehicles with velocity vj = 0, the average velocity v̄(t)
is measured at each time step t. For t → ∞, the sys-
tem reaches a stationary state with average velocity v̄∞.
Figure 9 shows that the maximum of the relaxation pa-
rameter is near, but below, the density corresponding to
maximum flow (cf. Fig. 4) in both models. However, in the
NaSch model, τ decreases quickly when the maximum is
reached while it decreases relatively slowly in the NaSch-
D model. This may indicate that the transitions from free
flow to congested flow in these two models are qualita-
tively different, which will be further explored in our fu-
ture work.

3.2 Open boundary conditions

For open boundary conditions, vehicles enter a road from
the left end of the road and move out of the road from
the right end. At an entry, a new vehicle is inserted at
xin = min[2vmax + 1, xlast − (vmax + 1)] with maximum
velocity vmax with probability α when the last vehicle is
beyond 2vmax + 1 (i.e.,xlast > 2vmax + 1). For the NaSch-
D model, it is assumed that its velocity is vmax in the
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Fig. 7. The spatio-temporal structures of the NaSch-D model and the NaSch model. (a–d) show those of NaSch-D model and
(e–h) show those of NaSch model. The randomization is p = 0.1 in (a, e), p = 0.3 in (b, f), p = 0.5 in (c, g), p = 0.7 in (d, h).

previous time step. Therefore, its position in the previous
step is xin − vmax. At the right boundary, a vehicle is
removed when it is beyond L. Furthermore, a speed limit
region is imposed between 0.7L and 0.8L, in which the
maximum velocity reduces to vmax,limit.

Similarly, we consider the deterministic version of the
NaSch-D model first. Figure 10 shows the dependence of
the flow rate on the entrance probability α in the NaSch-
D model without consideration of the speed limit. The
flow rate increases monotonically with α. Furthermore,
the flow rate is identical with that of the deterministic
NaSch model.

When considering the speed limit, some interesting
results are identified. Figure 11 shows the dependence
of the flow rate on the entrance probability α where
vmax,limit = 2 and 3. One can see that in the NaSch-D
model, the flow rate firstly increases with α. After the

maximum is reached, it begins to decrease with α. This is
different from the NaSch model, where after the maximum
is reached, the constant flow rate is maintained.

Figure 12 shows the spatio-temporal patterns of the
NaSch-D model at two different values of α. One can see
that the patterns are different from each other. When α =
1, the density waves are identical to each other, while this
is not the case for α = 0.5. We notice that for α = 1,
a stationary jam exists near the left boundary,and this
lowers the flow rate.

Next we investigate the randomization effect in open
boundary conditions. Figure 10 also shows the depen-
dence of the flow rate on the entrance probability α in
the non-deterministic NaSch-D model (without consider-
ation of speed limit). One can see that for small p, the
flow rate first increases then decreases with α. With the
increase of p, the phenomenon gradually weakens. When p
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Fig. 8. (Color online) The distance headway distribution in
the NaSch-D model (dashed lines) and in the NaSch model
(solid lines). The density ρ = 0.2. (a) p = 0.1; (b) p = 0.3; (c)
p = 0.5; (d) p = 0.7. In (d), the left inset (red line) shows the
distribution of the NaSch model in a log-log plane, the right
inset (red line) shows the distribution of the NaSch-D model
in a log-log plane. The black lines in both insets are straight
lines for guidance of these.

Fig. 9. The relaxation parameter near the transition density.
The system size used is L = 200 000, the randomization p =
0.5.

is large, the flow rate remains constant after the maximum
is reached.

Figure 13 shows the spatio-temporal patterns of the
non-deterministic NaSch-D model at two different values
of α. As mentioned before, it is evident that a stationary
jam exists near the left boundary for α = 1. This lowers
the flow rate. With the increase of p, the stationary jam
is gradually broken. Therefore, the flow rate can remain
constant after the maximum is reached.

4 Conclusion

This paper has investigated the effects of drivers reaction
delay in the Nagel-Schreckenberg (NaSch) model. The ac-
celeration rule in the NaSch model is revised to incorpo-
rate delay time, so we have used a NaSch-D model.

Fig. 10. The dependence of the flow rate on the entrance
probability α in the NaSch-D model. The scattered data shows
the flow rate of the deterministic NaSch model.

Fig. 11. The dependence of the flow rate on the entrance
probability α in the NaSch-D model and NaSch model.

We studied traffic flow properties in the NaSch-D
model under both periodic and open boundary condi-
tions. The fundamental diagram, spatio-temporal pat-
terns, density-density correlation functions, relaxation
time, and distance headway distribution are investigated.

Results found are as follows: (i) the metastable state
exists in the deterministic NaSch-D model; (ii) the inter-
val between the peaks in the density-density correlation
function is much larger in the NaSch-D model than that in
the NaSch model; (iii) the reaction delay of drivers will de-
crease the capacity of a road; (iv) a rough plateau forms in
the fundamental diagram when p is large; (v) the jams are
more condensed in NaSch model than in NaSch-D model;
(vi) the distance headway of NaSch-D model exhibits a
multi-peak distribution when randomization p is small;
(vii) for large p, the distribution of distance headway fol-
lows a power law in NaSch-D model; (viii) under open
boundary conditions, the existence of a stationary jam
near the left boundary will lower the flow rate.

In future work, we will extend the NaSch-D model to
multi-lane roads and study the delay effects in lane chang-
ing behaviors. Furthermore, the delay effects in other cel-
lular automata traffic flow models, such as the models that
can describe synchronized flow, will also be investigated.
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Fig. 12. The spatio-temporal patterns of the deterministic NaSch-D model at two different values of α. (a) α = 0.5; (b) α = 1.0.
The parameter vmax,limit = 2.

Fig. 13. The spatio-temporal patterns of the non-deterministic NaSch-D model at two different values of α. (a) α = 0.5; (b)
α = 1.0. The parameter p = 0.01.
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